One-Dimensional Functions

Analytic one-dimensional functions

Function available for use when, e.g., applying broadening to calculated structure factors, radial distribution functions etc.

Keyword Parameters Derivative1 FT2 DKN3 Description
None No function - returns zero.
Gaussian FWHM Un-normalised Gaussian with no prefactor $$ f(x) = \exp\left(-\frac{x^2}{2c^2}\right), c = \frac{\textrm{FWHM}}{2 \sqrt{2 \ln(2)}} $$
ScaledGaussian A
FWHM
Un-normalised Gaussian with prefactor $$ f(x) = A\exp\left(-\frac{x^2}{2c^2}\right), c = \frac{\textrm{FWHM}}{2 \sqrt{2 \ln(2)}} $$
OmegaDependentGaussian FWHM Un-normalised Gaussian with variable FWHM and no prefactor - note that the parameter $\omega$ is set implicitly by the context using the broadening function $$ f(x) = \exp\left(-\frac{x^2}{2(c\omega)^2}\right), c = \frac{\textrm{FWHM}}{2 \sqrt{2 \ln(2)}} $$
GaussianC2 FWHM1
FWHM2
Un-normalised Gaussian with constant and variable FWHM components and no prefactor - note that the parameter $\omega$ is set implicitly by the context using the broadening function $$ f(x) = \exp\left(-\frac{x^2}{2(c_1 + c_2\omega)^2}\right), c_n = \frac{\textrm{FWHM}_n}{2 \sqrt{2 \ln(2)}} $$
LennardJones126 $\epsilon$
$\sigma$
Lennard-Jones 12-6 short-range potential $$ f(x) = 4\epsilon \left( \left( \frac{\sigma}{x} \right)^{12} - \left( \frac{\sigma}{x} \right)^6 \right) $$
Buckingham A
B
C
Buckingham short-range potential $$ f(x) = A \exp\left(-B x\right) $$
GaussianPotential A
fwhm
$x_0$
Gaussian potential centred at $x_0$, intended to be used as a potential override. $$ f(x) = A\exp\left(-\frac{\left(x-x_0\right)^2}{2c^2}\right), c = \frac{\textrm{FWHM}}{2 \sqrt{2 \ln(2)}} $$
Harmonic k Simple harmonic well potential$$ E_{ij} = \frac{1}{2} k r^2 $$ $$ F_{ij} = -k r $$

1Whether the first derivative of the function is defined

2Whether an analytic Fourier transform is defined

3Whether discrete kernel normalisation is defined (function sums to 1.0)