One-Dimensional Functions
Analytic one-dimensional functions
Function available for use when, e.g., applying broadening to calculated structure factors, radial distribution functions etc.
Keyword | Parameters | Derivative1 | FT2 | DKN3 | Description |
---|---|---|---|---|---|
None |
– | ✓ | ✓ | No function - returns zero. | |
Gaussian |
FWHM |
✓ | ✓ | Un-normalised Gaussian with no prefactor $$ f(x) = \exp\left(-\frac{x^2}{2c^2}\right), c = \frac{\textrm{FWHM}}{2 \sqrt{2 \ln(2)}} $$ | |
ScaledGaussian |
A FWHM |
✓ | ✓ | Un-normalised Gaussian with prefactor $$ f(x) = A\exp\left(-\frac{x^2}{2c^2}\right), c = \frac{\textrm{FWHM}}{2 \sqrt{2 \ln(2)}} $$ | |
OmegaDependentGaussian |
FWHM |
✓ | ✓ | Un-normalised Gaussian with variable FWHM and no prefactor - note that the parameter $\omega$ is set implicitly by the context using the broadening function $$ f(x) = \exp\left(-\frac{x^2}{2(c\omega)^2}\right), c = \frac{\textrm{FWHM}}{2 \sqrt{2 \ln(2)}} $$ | |
GaussianC2 |
FWHM1 FWHM2 |
✓ | ✓ | Un-normalised Gaussian with constant and variable FWHM components and no prefactor - note that the parameter $\omega$ is set implicitly by the context using the broadening function $$ f(x) = \exp\left(-\frac{x^2}{2(c_1 + c_2\omega)^2}\right), c_n = \frac{\textrm{FWHM}_n}{2 \sqrt{2 \ln(2)}} $$ | |
LennardJones126 |
$\epsilon$ $\sigma$ |
✓ | Lennard-Jones 12-6 short-range potential $$ f(x) = 4\epsilon \left( \left( \frac{\sigma}{x} \right)^{12} - \left( \frac{\sigma}{x} \right)^6 \right) $$ | ||
Buckingham |
A B C |
✓ | Buckingham short-range potential $$ f(x) = A \exp\left(-B x\right) $$ | ||
GaussianPotential |
A fwhm $x_0$ |
✓ | Gaussian potential centred at $x_0$, intended to be used as a potential override. $$ f(x) = A\exp\left(-\frac{\left(x-x_0\right)^2}{2c^2}\right), c = \frac{\textrm{FWHM}}{2 \sqrt{2 \ln(2)}} $$ | ||
Harmonic |
k |
✓ | Simple harmonic well potential$$ E_{ij} = \frac{1}{2} k r^2 $$ $$ F_{ij} = -k r $$ |
1Whether the first derivative of the function is defined
2Whether an analytic Fourier transform is defined
3Whether discrete kernel normalisation is defined (function sums to 1.0)